Rémi MEVAERE - 16/02/2021


Présentation du repère

Le repère de Frenet, que l'on doit au mathématicien et astronome Jean Frédéric Frenet $^{[1],[2]}$ (1816 - 1900 à Périgueux) permet d'étudier les mouvements (en cinématique) des corps au voisinage local des courbes. Je me propose dans cet article de clarifier ce concept en utilisant une démonstration purement géométrique.

https://s3-us-west-2.amazonaws.com/secure.notion-static.com/a53db2f1-08fa-459d-a939-a1fd8c1436a3/Untitled.png

Le long d'une trajectoire quelconque, on peut définir localement en M un cercle osculateur (de centre C) qui vient épouser la courbure du mouvement. On défini alors une base locale pour décrire le mouvement en s'appuyant sur le trièdre de Frenet qui est défini par trois vecteurs $(\vec{e_N},\vec{e_T},\vec{e_B})$.

Le référentiel d'étude est composé d'un repère d'espace $(O,x,y,z)$ et d'une horloge.

Dérivation de la formule de la vitesse

La vitesse est par définition relative à un référentiel :

$$ \overrightarrow{V_{A/\mathcal{R}}}=\left(\frac{d\overrightarrow{OA}}{dt} \right)\mathcal{R}=\left(\frac{d\overrightarrow{OA}}{ds} \right)\mathcal{R}\left(\frac{ds}{dt}\right)_\mathcal{R} $$

Pour dériver convenablement la formule donnant la vitesse, il faut décrire convenablement la géométrie du problème, sans en restreindre trop la généralité. Ce que je présente ci-dessous en effectuant un agrandissement.

https://s3-us-west-2.amazonaws.com/secure.notion-static.com/a4b5d82d-30d8-4ecb-89c9-0e472f9a7dfd/Untitled.png

Pour notre démonstration on passe d'un élément différentiel, infiniment petit $d\overrightarrow{OA}$ à un élément plus grand et plus accessible pédagogiquement $\Delta \overrightarrow{OA}$ qui est la variation du vecteur $\overrightarrow{OA}$ entre t et t + dt.

$$ \Delta \overrightarrow{OA} \approx \overrightarrow{OA}(t+dt) - \overrightarrow{OA}(t) $$

$$ \Delta \overrightarrow{OA} \approx \overrightarrow{OA'} - \overrightarrow{OA} = \overrightarrow{AA'} $$

Pour une petite variation, on peut considérer au premier ordre que :

$$ \Delta S \approx ||\overrightarrow{AA'}|| = AA' $$

$$ \overrightarrow{V_{A/\mathcal{R}}}=\left(\frac{d\overrightarrow{OA}}{ds} \right)\mathcal{R}\left(\frac{ds}{dt}\right)\mathcal{R}\approx \left(\frac{ds}{dt}\right)\mathcal{R}\left( \frac{\Delta \overrightarrow{OA}}{\Delta S} \right)\mathcal{R} \approx \left(\frac{ds}{dt}\right)\mathcal{R}\left( \frac{ \overrightarrow{AA'}}{AA'} \right)\mathcal{R} =\mathcal{v} \cdot \vec{e_T} $$


On obtient alors la vitesse de l'objet A dans le référentiel $\mathcal{R}$, cette vitesse est tangente à la trajectoire.

$$ \overrightarrow{V_{A/\mathcal{R}}}=\mathcal{v} \cdot \overrightarrow{e_T} $$

Dérivation de la formule de l'accélération

$$ \overrightarrow{V_{A/\mathcal{R}}}=\mathcal{v} \cdot \overrightarrow{e_T} $$

Pour obtenir l'accélération, en cinématique on dérive :

$$ \overrightarrow{a_{A/\mathcal{R}}}=\left(\frac{d\mathcal{v}}{dt} \right)\mathcal{R}\vec{e_T} + \mathcal{v} \left(\frac{d\mathcal{\vec{e_T}}}{dt} \right)\mathcal{R} $$

https://s3-us-west-2.amazonaws.com/secure.notion-static.com/0a309a53-97fa-4583-97f9-951d87f9f82a/Frenet_2.png

Comme précédemment et pour le deuxième membre on cherche la variation du vecteur $\Delta \vec{e_T}$ :

$$ \Delta \overrightarrow{e_T} = \overrightarrow{A'I'} - \overrightarrow{AI} =\overrightarrow{AJ} -\overrightarrow{AI} $$

$$ \Delta \overrightarrow{e_T} = \overrightarrow{IJ}=IJ \cdot \vec{e_N} $$